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ABSTRACT 

In this contribution I try to illustrate some of the most significant moments in the 
history of AI (Artificial Intelligence), imagining that they have been a series of sub-
sequent stages in the development of the so called “Child Program.” With this name 
Alan Turing – in Computing machinery and intelligence (1950) – described for the 
first time the idea of an algorithm ‟capable of being educated.” After discussing Tu-
ring’s prophecy, I will present some milestones of research in AI considering that 
each is a piece of a ‟learning scheme” of extended intelligence, i.e. an intelligence 
ascribable not only to humans beings, but also to any subject able to support think-
ing functions. I propose that from the elements of this scheme it is possible to draw 
useful suggestions for human education in general. In the final part of the contribu-
tion, I will collect the elements into a synoptic vision, which I will call “the educa-
tional protocol of the extended intelligence.” This will define the minimum require-
ments that a training course should possess in order to conduct a ‟child program” at 
the ‟adult program” stage. 
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1. THE CHILD PROGRAM 

The possibilities that (AI) Artificial Intelligence can offer to the field of edu-
cation are not a recent theme, but something foreseen right from its historical 
origin. In a famous passage of Computing machinery and intelligence (1950) 
Alan Turing wrote: 
 

In the process of trying to imitate an adult human mind we are bound to 
think a good deal about the process which has brought it to the state that it 
is in. We may notice three components. (a) The initial state of the mind, say 
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at birth, (b) The education to which it has been subjected, (c) Other experi-
ence, not to be described as education, to which it has been subjected. In-
stead of trying to produce a programme to simulate the adult mind, why not 
rather try to produce one which simulates the child’s? If this were then sub-
jected to an appropriate course of education one would obtain the adult 
brain. Presumably the child brain is something like a notebook as one buys 
it from the stationer’s. Rather little mechanism, and lots of blank sheets. 
(Mechanism and writing are from our point of view almost synonymous.). 
Our hope is that there is so little mechanism in the child brain that some-
thing like it can be easily programmed. The amount of work in the educa-
tion we can assume, as a first approximation, to be much the same as for the 
human child.1 
 
This passage, which today is considered prophetic,2 had no resonance at 

the time and was perhaps perceived as a provocation. Turing imagines that, 
if a machine can be made capable of simulating the symbolic behavior of a 
mind at a certain stage of its development, the same machine will also be 
programmable to simulate the development from an child-uneducated stage 
to an adult-trained one – a process which largely corresponds to what our 
culture has always considered as “education.” Turing imagines a child’s 
mind to be like a notebook filled with blank sheets, to which a writing mech-
anism is attached. Evidently, in the adult stage, the mind will be full of 
notes, and there will be less and less space to write something new. What 
Turing proposes then is not to write a program that simulates an exercise 
book already full of information, but a program that replicates the way in 
which a child begins to write something on his own mind sheet. Now, the 
questions are the following: what kind of instructions should this program 
have? Does it act without any previous knowledge or does it start from par-
ticular presuppositions? How does it select and capture data from education-
al training and learning environment? 

As we will see below, some breakthroughs in the field of knowledge ar-
tificialization look exactly like attempts to answer all or some of these ques-
tions. The current and almost unique interest in machine learning seems to 
confirm this working hypothesis. Even if we are unable to predict future de-
velopments, the panorama of research in AI is objectively dominated by the 
problem of ‟educating machines to learn by themselves” rather than by the 
concern to make computational processes even more rigorous. This brings us 
to the second thesis that I intend to defend. It can be formulated as follows: 

                                                        
1 A. M. Turing, “Computing machinery and intelligence,” Mind, 59 (1936): 433-460.  
2 As we shall see, this issue is central for the current development of machine learning. On 
Turing’s Child Program see S. Muggleton, “Alan Turing and the development of AI,” AI 
Communication, 27, 1 (2014): 3-10. 
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if the story of AI embodies the effort to fully develop the “Child program,” 
this same story can also be read as the unfolding – at each stage – of a pro-
cess of an ever better understanding of what education is in a broader per-
spective than the human one. However, precisely for this reason, it is also 
valid for humans. I will call this point of view ‟extended intelligence educa-
tional protocol.” In the conclusions, I will give a brief description of it. 

2. THE BIRTH OF A NEW RESEARCH PARADIGM 

At the beginning of 1956, John McCarthy – helped by Claude Shannon and 
Nathaniel Rochester – managed to bring together U.S. most relevant re-
searchers interested in automata theory, neural nets, and the study of intelli-
gence. Finally it was decided – and this happened in the summer of 1956 – 
that the workshop would take place for two months at Dartmouth College in 
Hanover, New Hampshire. The abstract of the invitation addressed to re-
searchers reported the following words: 
 

The study is to proceed on the basis of the conjecture that every aspect of 
learning or any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it. An attempt will be 
made to find how to make machines use language, form abstractions and 
concepts, solve kinds of problems now reserved for humans, and improve 
themselves. We think that a significant advance can be made in one or more 
of these problems if a carefully selected group of scientists work on it to-
gether for a summer.3  

 
Among the ten participants in the event, in addition to the already men-

tioned John Mc Carthy, Shannon and Rochester – we have also to remember 
Trenchard More from Princeton, Arthur Samuel from IBM, and Ray Solo-
monoff and Oliver Selfridge from MIT. All the scholars presented their 
works and gave their contribution, but the real protagonists were without any 
doubt Allen Newell and Herbert Simon from Carnegie Tech. Arousing the 
admiration of their colleagues, Newell and Simon presented a reasoning pro-
gram, the Logic Theorist (LT), now considered the first AI program.4 

Soon after the workshop, the program was able to prove 38 of the first 

                                                        
3 Perhaps the Dartmouth workshop did not lead to any new breakthroughs, but it did introduce 
all the major figures to each other. For the next 20 years, the field would be dominated by the-
se scholars and their students and colleagues at MIT, CMU, Stanford, and IBM. 
4 On the historical importance of this program see D. Cravier, AI: The Tumultuous Search for 
AI (New York: BasicBooks, 1993); P. McCorduck, Machines Who Think (Natick: A. K. Pe-
ters, 2004); S. Russel, and P. Norvig, AI: A Modern Approach (Upper Saddle River, New Jer-
sey: Prentice Hall, 2010). 



FABIO GRIGENTI 

 

44 

52 theorems in Chapter 2 of Russell and Whitehead’s Principia Mathemati-
ca. Russell was reportedly delighted when Simon showed him that the pro-
gram had come up with a proof for one theorem that was shorter and more 
elegant than the one in Principia. Newell and Simon attempted to publish the 
new proof in The Journal of Symbolic Logic but it was rejected on the 
grounds that a new proof of an elementary mathematical theorem was not 
notable, apparently overlooking the fact that one of the authors was a com-
puter program! 

Beyond any doubt, this brief account of the extraordinary summer of 
1956 shows us that AI embraced from the beginning the idea of simulating 
human faculties such as language use, conceptual reasoning and problem 
solving – capabilities that until then were retained to be exclusively human. 
None of the other scientific research programs were addressing these issues. 
The Logic Theorist interpreted this mission perfectly. Its existence proved 
that it was possible to make a machine conduct non-numerical reasoning. 

Thanks to the new program, several concepts were introduced, which 
were bound to become central in AI research. I will try to summarize them 
starting from the image of the Child Program. More precisely, I now ask this 
question: how did the child Logic Theorist (starting from a hypothetical 
stage zero) learn to prove logic theorems? In other words, what was the 
training path that led him to achieve this particular skill? To answer this 
question, we need to isolate at least two elements: 
 
- A) Logic Theorist explored a search tree. The root was the initial hy-

pothesis and each branch was a deduction based on the rules of logic. 
The goal was somewhere in the tree, being the proposition the program 
intended to prove. The pathway along the branches that led to the goal 
was a proof – a series of statements, each deduced using the rules of log-
ic that led from the hypothesis to the proposition to be proved. 

 
- B) Newell and Simon realized that the search tree would grow exponen-

tially and they needed to ‟trim” some branches, using ‟rules of thumb” 
to determine which pathways were unlikely to lead to the solution. They 
called these ad hoc rules ‟heuristics” and they also clarified their func-
tion. As will be better understood in the following story of AI, a proof 
may become too complex or go down a road that leads nowhere. In this 
case, to develop a method to overcome the intractable combinatorial ex-
plosion of exponentially growing searches is necessary. 

 
The Logic Theorist’s first way of proceeding (A) tells us that reasoning 

is a research that does not proceed along a single path, but that explores al-
ternatives and possibilities. The second aspect (B) is particularly relevant. It 
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shows that the effective acquisition of knowledge does not depend exclu-
sively on the correctness of the logical elaboration, but also on non-logical 
rules, derived from experience – rules which avoid the useless accumulation 
of passages and the so called ‟dead ends.”  

Now, if Logic Theorist could be the trainer of our Child Program, it 
would teach them that the starting point of their educational path is the es-
sential pre-requisite of any future advancement. If we do not know what we 
already know, we cannot even understand what we do not know. In particu-
lar, without an exact awareness of our initial level, we would not be able to 
develop a program to achieve our goal of improvement. Regarding this last 
aspect, namely the achievement of an educational goal, the Logic Theorist 
teaches that it must be rigorously formulated. In many cases, a change of 
purpose frustrates the work already done and forces us to start over with del-
eterious effects on the effectiveness of the performance. Finally, our Child 
Program should learn the most important thing from the Theorist: the best 
educational path is made up of choices at crossroads that are not the strict 
consequences of reasoning. At some point, it is all about making decisions 
on shortcuts and alternative routes to avoid unnecessary work and wasted 
time. 

3. PROBLEM SOLVING AND SYMBOLIC RATIONALITY  

The Logic Theorist was an undeniably successful program, but its capabili-
ties were still limited to a narrow domain of knowledge. For this reason, 
Newell and Simon designed another milestone in the history of AI, namely 
the General Problem Solver, or GPS (1957). Unlike Logic Theorist, this 
program was designed from the start to imitate the human problem-solving 
protocols beyond the mere domain of formal logic. This intent was ex-
pressed by Newell and Simon in the presentation report, as follows: 
 

Construction and investigation of this program is a part of research effort by 
the authors to understand the information processes that underlie human, 
adaptive and creative abilities. The approach is synthetic – to construct 
computer programs that can solve problems requiring intelligence and adap-
tation, and to discover which varieties of these programs can be matched to 
data on human problem solving.5 

 
The salient features6 of GPS were: a) the recursive nature of its problem 

                                                        
5 A. Newell, and H. A. Simon, Report on a General Problem-Solving Program (Pittsburgh: 
Carnegie Institute of Technology, 1958): 11. 
6 Ibid. 
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solving activities, b) the separation of problem contents from resolution 
techniques, to increase the generalization of the algorithm, c) means-ends 
analysis and planning as the two general resolution algorithms d) the lan-
guage used to code the algorithm and the IPL. In general, any problem that 
can be expressed as a set of well-formed formulas and that is a directed 
graph with one or more axioms and desired conclusions could be solved, at 
least theoretically, by GPS.  

Particularly significant for our perspective is the circumstance that GPS 
was the first computer program that separated the definition of the problems 
from the strategy to solve it. The clear distinction between these two mo-
ments was not clear at all before the invention of GPS. A problem can be de-
fined formally by five components. 1) The initial state that the agent starts 
in. For example, I am in the city of Padua and I want to reach the city of Mi-
lan. Of course it is crucial to know that I am in Padua and that I have to leave 
Padua if I want to solve my problem. Had I been in Bologna, my different 
start point would have required another route to get to Milan. 2) A descrip-
tion of the possible actions available to the agent. Given a particular initial 
state (for example: I am at the Padua train station), I have to know the set of 
actions that can be executed starting from the train station (for example: 
look at a timetable, decide which train to take, buy a ticket…). 3) A descrip-
tion of what each action does. Most of the time, starting from my initial 
state, I can have more actions available to achieve my goal (from Padua, 
there are several routes that can lead me to Milan; I need to know where 
each one would take me in relation to my goal). 4) At this point it is clear 
that the city of Milan is not a state like any other, but is my final state, name-
ly my goal. The good problem solver must know and distinguish his goals 
well, otherwise he would not know what to look for. 5) Finally, the solver 
must be able to evaluate the cost of its actions in relation to an optimal 
measure of its performance. For getting to Milan, time is essential, so the 
cost of a path might be its length in terms of kilometers. Now, let us imagine 
that we wanted to extract an educational protocol from GPS and that we used 
it with our Child Program. What cognitive aspects should we highlight 
about it? 

First of all, we should insist on the need to have a set of objectives al-
ready at the beginning of the process. We cannot solve a problem if we do 
not know what we want to achieve. The final goal cannot be found during 
the journey or changed from time to time depending on the circumstances. It 
must be clearly defined before leaving. Solving a problem is like traveling. 
We proceed through successive stages, we explore alternative routes, but 
then we try to get to the destination as quickly as possible. This means, how-
ever, that the whole process must be governed by a careful evaluation of 
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costs and benefits. A road that is too long can be convenient if it returns 
some advantages, otherwise it must be abandoned. 

GPS was an indisputable success; at the beginning, it proved able to 
solve a set of simple problems that could be sufficiently formalized, but it 
turned out to be impossible to apply it to any real-world problem because the 
search got easily lost in the combinatorial explosion. Put in another way, the 
number of ‟walks” through the inferential digraph became computationally 
untenable. 

The results achieved by GPS and other similar programs led Newell and 
Simon to formulate the famous physical symbol system hypothesis, which 
states what follows: 
 

The necessary and sufficient condition for a physical system to exhibit gen-
eral intelligent action is that it be a physical symbol system.  
 
Necessary means that any physical system that exhibits general intelligence 
will be an instance of a physical symbol system.  
 
Sufficient means that any physical symbol system can be organized further 
to exhibit general intelligent action. 
 
General intelligent action means the same scope of intelligence seen in hu-
man action: that in real situations behavior appropriate to the ends of the 
system and adaptive to the demands of the environment can occur, within 
some physical limits.7 

 
The consequences of this hypothesis – which was immediately ques-

tioned – are many and important. First, it establishes the following rule: if a 
physical system (the letters of an alphabet, the digits of a numerical (0 and 1) 
computer’s memory, the material pieces of a game) exhibits symbolic behav-
ior – that is, it is capable of manipulating its elements according to rules – 
then the property of general intelligence must be ascribed to this system. The 
implication between symbolism and intelligence established by Newell and 
Simon is close. It implies, for example, that, if both our Child Program and 
the mind of a real child demonstrate the ability to deal with symbols in cer-
tain domains, we should consider both as having the same cognitive capaci-
ties for the concerned symbolic field.  

The second consequence is equally significant: symbolic intelligence is 
action, that is, it can be expressed in public and describable behaviors, which 
transform a certain state of the physical world. More precisely, it is not that 
there is a mental manipulation of the symbols and, in a second moment, an 
                                                        
7 A. Newell, “Physical Symbol Systems,” Cognitive Science, 4 (1980): 170. 
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action; on the contrary, intelligence and manifest behavior are indistinguish-
able, even by thought. The position of Newell and Simon is certainly reduc-
tionist and I do not intend to defend it at all. However, it identifies the gen-
eral core of extended intelligence, which consists in the ability to manipulate 
a physical system of symbols and in the possibility of establishing rules that 
make it possible to implement, modify and evaluate this capacity.  

As we will see later, this hypothesis has been challenged from many di-
rections. 

4. COMMON SENSE 

1958 was an extraordinary year for the development of AI. John McCarthy 
moved from Dartmouth to MIT and there made several crucial contributions 
within a few months. In the first place, he defined the high-level language 
LISP, which was to become the dominant AI programming language for the 
next 30 years. LISP is an acronym for the expression “list processing,” 
which indicates the basic structure that permeates the syntax of this func-
tional language: the list. A list is a sequence, whose length can vary, which 
can contain numbers, symbols or other lists nested in it. LISP programs are 
themselves represented as lists and can therefore be manipulated like any 
other data. All this ensures enormous advantages to the programming activi-
ty and allows to quickly define a wide range of problems. As one of the old-
est programming languages still in use, LISP offers several different dialects 
and has influenced the development of other languages. 

In relation to this technical creation, McCarthy published in the same 
year the article Programs with Common Sense,8 where he explained his 
‟philosophy of learning.” In his contribution McCarthy described the Advice 
Taker, a hypothetical program that can be considered as the first complete AI 
system. Like the Logic Theorist, McCarthy’s program was designed to use 
knowledge to search for solutions to problems. But unlike other programs, it 
aimed to embody general knowledge of the world. For example, it showed 
how some simple axioms would enable the program to generate a plan to 
drive to the airport. McCarthy is thus able to give a precise definition of 
common sense, which he understands as a dynamic and cognitively improv-
able property. His words are as follows: 

                                                        
8 Programs with Common Sense was probably the first paper on logical AI, i.e. AI in which 
logic is the method of representing information in computer memory and not just the subject 
matter of the program. The paper was given in the Teddington Conference on the Mechaniza-
tion of Thought Processes in December 1958 and printed in the proceedings of that confer-
ence. It may also be the first paper to propose common sense reasoning ability as the key to 
AI. 



THE CHILD PROGRAM AND THE HISTORY OF AI 

 

49 

 
This property is expected to have much in common with what makes us de-
scribe certain humans as having common sense. We shall therefore say that 
a program has common sense if it automatically deduces for itself a suffi-
ciently wide class of immediate consequences of anything it is told and what 
it already knows.9 

 
According to McCarthy, common sense is not a particular set of 

knowledge, but the ability to independently derive information from what we 
already know. The objective of McCarthy was to make a program – Advice 
Taker – that could learn from its experience as effectively as humans do.  

And what humans do is accumulating knowledge by listening to a mas-
ter and then learn how to derive contents not explicitly communicated from 
this background. Now, McCarthy argues, ‟in order for a program to be ca-
pable of learning something it must first be capable of being told it.”10 This 
is to say that Advice Taker (and this explains its name!) would be able to 
learn in similar way to humans, if we could tell him how to do it.  

There is an important distinction – McCarthy finally observes – between 
the way in which a computer is programmed and the way in which a human 
being is educated. A machine is educated mainly in the form of a sequence 
of imperative sentences, while a human is educated mostly in declarative 
sentences describing the situation where an action is required together with 
some imperatives that express what is wanted. The superiority of the de-
clarative model of education/programming is evident when one considers its 
advantages in comparison to the imperative one. He writes: 
 

Advantages of Imperative Sentences: 
1. A procedure described in imperatives is already laid out and is carried out 
faster.  
2. One starts with a machine in a basic state and does not assume previous 
knowledge on the part of the machine. 
 
Advantages of Declarative Sentences:  
1. Advantage can be taken from previous knowledge.  
2. Declarative sentences entail logical consequences, and they can be ar-
ranged in such a way that the machine will have access to sufficiently sim-
ple logical consequences of what it is told and what it previously knew.  
3. The meaning of declaratives is much less dependent on their order than is 
the case with imperatives. This makes it easier to have afterthoughts.  
4. The effect of a declarative is less dependent on the previous state of the 

                                                        
9 J. McCarthy, Programs with common sense, in Proceedings Symposium on Mechanisation 
of Thought Processes, Vol. 1 (London: Her Majesty’s Stationery Office, 1958): 77-84. 
10 Ibid.: 79. 
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system so that less knowledge of this state is required on the part of the in-
structor.11 

 
In these passages McCarthy establishes an essential difference between 

imperative programming/education and declarative programming/education. 
In the first case, it is about giving our Child program all the instructions (the 
program) to solve a problem, with the recommendation to follow them with-
out any deviation. No prior knowledge of the domain is required with this 
method. Each Child Program can easily be led from the zero stage to the ex-
pert stage. What it may already know has no role in the learning process. 
This means that our student will be very skilled in solving problems in envi-
ronments whose features he knows, but will be quite “clumsy” in new situa-
tions for which he received no rules. In these cases, the knowledge he al-
ready possesses will be useless to him. To acting effectively, he will have to 
receive further training. This happens because imperative programming lan-
guages dictates how something should be done. They are written as a step-
by-step guide (how!) for the computer and they describe which passages 
must be performed to reach the desired solution. 

Vice versa, the declarative programming paradigm does not provide ab-
solutely precise descriptions. The characteristic of declarative programming 
languages is that they always describe the desired end result instead of 
showing all the work steps. The declarative training focuses on the what, not 
on the how. To achieve the goal, the declarative programming determines 
automatically the path leading to the solution. It provides an approach that 
works well as long as the specifics of the final state are clearly defined, and 
accordingly there is an appropriate execution process. If both of these condi-
tions are satisfied, declarative programming is very effective. An example 
can help to understand the difference between imperative and declarative 
programming. Let us imagine that we have to build an Ikea wardrobe. There 
are two ways to proceed: either we imperatively follow the assembly instruc-
tions (HOW) or we look at a perfectly built wardrobe (WHAT) and imagine 
the steps we would have to take in order to get to the final result. However, 
these states must be thought of as relatively independent of the state that 
immediately precedes them, as they have consequences that have value in 
relation to the goal and not to the process. Ideally, there are various ways to 
build a wardrobe. What matters is the result, and this depends on the meas-
urable consequences of each step we take. But this means that what we have 
learned about building a wardrobe declaratively can be used, with minimal 
adaptation, to build a kitchen furniture. By virtue of its level of abstraction 
and of the open space left for the HOW, a declarative training will allow 

                                                        
11 Ibid. 
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more flexibility because it teaches to use prior knowledge in unexpected en-
vironments. 

5. TRANSLATION, COMPLEXITY AND KNOWLEDGE-BASED SYSTEMS 

The first stages of development of the AI paradigm were accompanied by 
great optimism about possible developments in the future.12 However, when 
the scope of the programs began to include broader and more complex prob-
lems than the simple ‟microworlds”13 used up to then, the first difficulties 
emerged. An interesting case is represented by the first attempts to automati-
cally translate from one language to another. It must be said that the actual 
concept of Machine Translation developed in a more concrete way around 
the 1930s. Around this time, French-Armenian engineer Georges Artsrouni14 
and Russian engineer Peter Troyansky15 presented two innovative proposals 
concerning the first patents for translation machines. The so called “mechan-
ical brain” conceived by Artsouni was a not so innovative device for the 
general processing (archiving, searching, consulting) of the information on 
tape, which could be used as a bilingual dictionary thanks to a word-by-word 
substitution mechanism. Instead, the most advanced model designed by 
Smirnov-Trojansky used a bilingual dictionary and a method for correlating 
grammatical rules existing in different languages. The translation process 
was divided into three phases: transformation of the original text into a logi-

                                                        
12 From the beginning, AI researchers were not shy about making predictions of their future 
successes. The following statement by Herbert Simon in 1957 is often quoted: «It is not my 
aim to surprise or shock you, but the simplest way I can summarize is to say that there are 
now in the world machines that think, that learn and that create. Moreover, their ability to do 
these things is going to increase rapidly until – in a visible future – the range of problems they 
can handle will be coextensive with the range to which the human mind has been applied», 
see H. A. Simon, and A. Newell, “Heuristic Problem Solving: The next Advance in Opera-
tions Research,” Operations Research, 6, 1 (1958): 8. 
13 The most famous microworld was the blocks world, which consists of a set of solid blocks 
placed on a tabletop. A typical task in this world is to rearrange the blocks in a certain way 
according to parameters such as: “the highest one” or “the lowest one” and so on. See T. 
Winograd, “Understanding natural language,” Cognitive Psychology, 3, 1 (1972). 
14 Georges Artsrouni (1893 -1922). Engineer of Armenian origin who emigrated to Paris. It is 
believed that he was the first not only to conceive, but also to build an automatic translation 
machine. For more information see: M. Daumas, “Les machines à traduire de Georges 
Artsrouni,” Revue d’histoire des sciences, 18, 3 (1965): 283-302. 
15 Pyotr Petrovich Smirnov-Troyansky (1894 -1950). Of humble origins, he was a professor 
of social sciences and technology at institutions of higher learning. An important Technical 
encyclopedia is owed to him, even if he dedicated his whole life to the construction of a trans-
lation machine. For an overview of his work see: J. Hutchins, and E. Lovtskii, “Petr Petrovich 
Troyanskii (1894-1950): A Forgotten Pioneer of Mechanical Translation,” Machine Transla-
tion, 15, 3 (2000): 187-221. 
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cal form modeled on the basis of the source language; transformation of this 
logical form into a second logical form modeled on the basis of the target 
language; transformation of this second logical form into a text in the target 
language. The focus of the translation process was the syntactic relationships 
between the terms in a sentence and the role – the logical form – that each of 
them played. Obviously, these systems could not function adequately, except 
in casual manner or for very short texts. 

The actual history of MT (Machine Translation) begins in 1949 with en-
gineer Warren Weaver, who first proposed to create a computer program ca-
pable of translating text from one language to another without any human 
intervention. In the paper entitled Translation,16 written for the Rockefeller 
Foundation’s Natural Science Division, the American engineer and mathe-
matician formulated some hypotheses about the potential and the methods of 
TA. He argued for the validity of the word-for-word substitution method, 
and proposed supplementing it with applied statistical techniques to detect 
the frequency of words and characters in parallel texts. Weaver’s idea quick-
ly managed to capture the attention of several companies, which decided to 
fund the project. In the 1950s the limits of any machine translation procedure 
began to emerge. At a conference in 1952, Yehoshua Bar-Hillel17 acknowl-
edged for the first time that fully automated translation could be achieved 
only at the cost of some degree of carelessness and that accordingly a Fully 
Automatic High Quality Translation was an unattainable goal. Bar-Hillel 
was convinced that semantic ambiguity and syntactic complexity were the 
major obstacles for machine translation systems, so he developed a prototype 
machine translator using simplified forms of English such as Basic English, 
created by linguist and writer Charles Ogden18 around the 1930s. 

The problems and difficulties highlighted at the time by Bar Hillel have 
persisted to this day. Even the most advanced translator needs human assis-
tance to produce a good quality text in the target language. This happens for 
two closely interrelated reasons: the first is that, especially at the beginning, 
machine translation relied exclusively on syntax, entirely neglecting the se-
mantic value of symbols; the second, which is a consequence of the first, is 

                                                        
16 W. Weaver, “Memorandum July 1949,” MT News International, 22 (1999): 5-6. 
17 Yehoshua Bar-Hillel (1915-1975) was a philosopher, mathematician, and linguist. He was a 
pioneer in the field of machine translation and formal linguistics. His most cited contribution 
in this field of research is Y. Bar-Hillel, “Some Linguistic Problems Connected With Machine 
Translation,” Philosophy of Science, 20, 3 (1953): 217-225. 
18 Charles Ogden (1889-1957) was a philosopher, linguist and writer. He was defined as a lin-
guistic psychologist and is now mostly remembered as the inventor and propagator of Basic 
English. Ogden’s science project on language is found in the very famous C. Ogden, Basic 
English: A General Introduction with Rules and Grammar (London: Paul Treber & Co., 
1930). 
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that, in order to translate, we need to know more than logic. Speaking a lan-
guage – Wittgenstein would say – is part of a form of life, in which meanings 
are closely connected to a context that cannot be shared by a machine. Keep-
ing fixed our need to establish the best educational training for our Child 
Program, the case of translation teaches us that – for domains as complex as 
languages actually spoken – the rules of logic are not enough. Equally im-
portant are the understanding of word meanings and the constraints deter-
mined by the context in which a term is used – which are both elements de-
pendent on language practice. 

The second problem – more general than that of translation – is indicated 
today by the very evocative expression ‟complexity monster.” As early as 
the late 1960s it was clear that many of the problems that AI was trying to 
solve were intractable. Most of the early programs solved problems by trying 
out different combinations of steps until the solution was found. This strate-
gy worked for two obvious reasons: a) the domains considered contained 
very few objects b) the actions that could be taken by the program were lim-
ited and the resolution sequences were quite short. There was hope that more 
powerful hardware and larger memories could help to deal with larger prob-
lems. As became clear from the subsequent development of computational 
complexity theory, however, this hope was entirely misplaced. 

The programs – despite technological advances – continued to prove ca-
pable of achieving solutions only in relation to small numbers of facts. It was 
evident that the circumstance that a program can – in theory – find a solu-
tion, does not imply that the program itself is in practice capable of finding 
it. The computational power of the artificial mind appeared imprisoned by 
seemingly insurmountable limits – limits so binding that it was thought that 
the AI paradigm should be abandoned. It seemed, in the end, that our Child 
Program had reached the end of its educational training, and that, unfortu-
nately, it had learned very little from it and rather inaccurately. It mastered a 
general-purpose search automatism, which was carried out by successive 
steps of reasoning until a solution was found. However, when the problems 
became more complex and the object domains more numerous, the Child 
Program lost its ability to navigate its assigned field and did not achieve any 
consistent results. 

The way seemed blocked. But, as is often the case, something happened. 
In 1969, at Stanford University, three very different figures – Ed Feigen-
baum, Bruce Buchanan, and Joshua Lederberg19 – attempted to reconstruct 
                                                        
19 Edward Albert Feigenbaum (1936) – often considered as the “father of expert systems” – 
was a student of Herbert Simon. Bruce Buchanan (1939), on the other hand, was a philoso-
pher who had retrained as a computer scientist, while Joshua Lederberg (1925) was an ac-
complished geneticist, so much so that he was awarded the Nobel Prize in 1958. The results 
of their joint work can be found in B. G. Buchanan, G. L. Sutherland, and E. A. Feigenbaum, 
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molecular structures from data provided by a mass spectrometer. A mass 
spectrum of a compound is produced by a mass spectrometer and is used to 
determine its molecular weight, that is the sum of the masses of its atomic 
constituents. For example, the compound water (H2O) has a molecular 
weight of 18 since hydrogen has a mass of 1.01 and oxygen 16.00, and its 
mass spectrum has a peak at 18 units. The input of the DENDRAL program 
consisted of the formula of water, knowledge of the atomic mass numbers of 
individual molecule fragments (e.g., H2 and O), and valence rules. Its output 
was to determine the possible combinations of atomic constituents whose 
mass added together would give 18. However, as the weight increases and 
the molecules become more complex, the number of possible compounds in-
creases dramatically. As one can easily guess, the problem becomes intrac-
table already for average-sized molecules. Again the monster of complexity! 

The researchers of the project DENDRAL did not give up and tried a 
new move in the game. They learned from analytical chemists that their 
method was not to compute every possible formula step by step, but to look 
for well-known patterns of spectral peaks to which corresponded 
‟compounds” of common occurrence from the molecule. What does it 
mean? Take, for example, the formula for Glucose: C6H12O6. The Glucose 
has a mass of 180, but smaller mass groups can be generated from it, such as 
02, which could have given, in the mass spectrum, a peak of 36. Now, to rec-
ognize a subgroup Water H2O, which has weight 18, DENDRAL reasoned 
in the following way: 
 

if there are two peaks at x1 and x2 such that 
(a) x1 + x2 = M + 18 (M is the mass of the whole molecule);  
(b) x1 − 28 is a high peak;  
(c) x2 − 28 is a high peak;  
(d) At least one of x1 and x2 is high.  
then there is a water subgroup. 
 
By incorporating the heuristics of expert chemists, DENDRAL avoided 

the monster of complexity and greatly reduced the number of searchable 
structures. The program knew not only the formal rules of elemental compo-
sition (a chemical theory) but also other special instructions. In a way, 
DENDRAL had learned and cleverly used the Mc Carthy’s approach, that is, 
the separation between knowledge of a domain (rules and objects) and rea-
soning about this domain. DENDRAL could provide our Child Program 

                                                                                                                                  
Heuristic DENDRAL. A program for generating explanatory hypotheses in organic chemistry, 
in B. Meltzer, D. Michie, and M. Swann (Eds.), Machine Intelligence (Edinburgh: Edinburgh 
University Press, 1969). 
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with a new and more powerful educational training. It did not consist of gen-
eral rules potentially applicable to every domain, but of in-depth knowledge 
of a specific field – which in this case was analytical chemistry. DENDRAL 
could perform broader steps of reasoning and could more easily handle sig-
nificant cases that typically occur in narrow areas of expertise. Somehow, 
the program solved a difficult problem from what it already knew, and what 
it already knew was the solution. 

6. THE NEURON AS A COMPUTATIONAL MACHINE 

It is very often forgotten that one of the earliest contributionsto the field the 
field of AI was the paper A logical calculus of the ideas immanent in nerv-
ous activity20 – appeared in 1943 and written by Warren McCulloch and 
Walter Pitts. In this work, they combined three theoretical elements: 
knowledge of the physiology and functioning of neurons in the brain; a for-
mal analysis of propositional logic based on the symbolism of Language II 
(Carnap, 1938) and augmented with various notions taken from Russell and 
Whitehead (1927); and, finally, Turing’s theory of computation. They pro-
posed a model of artificial neurons in which each neuron is characterized by 
being “on” or “off,” with a switch to “on” occurring in response to stimula-
tion by a sufficient number of neighboring neurons.  

McCulloch and Pitts established that a) the activity of neuron is an “all-
or-none” process and that b) “the ‘all-or-none’ law of nervous activity is 
sufficient to ensure that the activity of any neuron may be represented as a 
proposition” so that the physiological relations existing among nervous 
activities “correspond to relations among the propositions.”21 In this way, to 
each reaction (state) of any neuron can be associated a corresponding 
assertion (V/F or 0 1) of a simple proposition. With this (perhaps too hasty) 
assimilation of neural activity to propositional calculus, McCulloch and Pitts 
showed that any computable function could be computed by some network 
of connected neurons, and that all the logical connectives (and, or, not, etc.) 
could be implemented by simple net structures. McCulloch and Pitts were 
certainly the first to suggest that suitably defined networks could learn and, 
in general, that they were capable not only of reacting, but of making 
distinctions and fixing the information.  

This intuition found its first determination in the subsequent Hebb’s rule. 
In his book The organization of Behavior (1949) Donald Hebb demonstrated 

                                                        
20 W. S. McCulloch, and W. Pitts, “A logical calculus of the ideas immanent in nervous ac-
tivity,” Bulletin of Mathematical Biophysic, 5 (1943): 115-133. 
21 Ibid.: 3. 
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a simple updating rule for modifying the connection strengths between 
neurons. 
 

Let us assume that the persistence or repetition of a reverberatory activity 
(or ‟trace”) tends to induce lasting cellular changes that add to its stability. 
[...] When an axon of cell A is near enough to excite a cell B and repeatedly 
or persistently takes part in firing it, some growth process or metabolic 
change takes place in one or both cells such that A’s efficiency, as one of 
the cells firing B, is increased.22 

 
This axiom, with its apparent simplicity, says something very important. 

In particular, it states that in the brain information is not located in a single 
point, but is represented by several interconnected elements. A single con-
cept corresponds to multiple neurons, and each neuron participates in the 
representation of multiple concepts. According to Hebb, neurons that excite 
each other form so-called cell clusters. These groups of cells, connected in 
the most intricate ways and belonging to distant regions of the brain, are the 
true medium of information, even of the learned one.  

The second consequence of Hebb’s model is even more significant. Un-
like what happens with the Turing Machine, the attention to the physiology 
of the brain makes us understand that learning is not (exclusively) a sequen-
tial process. If we imagine that educational growth is the passing from one 
step to another in a demonstration, or something like the successive accumu-
lation of information – we are probably dominated by a bias. In fact – as the 
connectionist models lead us to believe – neurons learn simultaneously. For 
each educational event, the brain learns as an interconnected system, involv-
ing billions of neurons even for the simplest representation. 

The first “artificial” implementation of this learning model was the per-
ceptron proposed in 1958 by the American psychologist Frank Rosenblatt.23 
Although it is now considered outdated, the perceptron nevertheless repre-
sents the starting model for the design of complex networks. It is a more 
general computational model than the McCulloch-Pitts model, since it intro-
duces numerical weights and a special interconnection path. In the original 
model, the computational units are threshold elements and the connection is 
derived stochastically. Learning or storage is achieved by feedback by ad-
justing the numerical weights until the output is made equal to the desired 
output. The classical perceptron is actually a true network for solving path 
recognition problems, as it is based on the fundamental idea of having the 
system learn a method of recognizing specific input paths. More precisely, 
                                                        
22 D. Hebb, The organization of Behavior (New York: Wiley & Sons, 1949): 56. 
23 F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organi-
zation in the Brain,” Psychological Review, 65, 6 (1958): 386-408. 
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the perceptron represents a special case of a neural network with mutually 
independent outputs. It is precisely this property that makes the study of the 
perceptron basic to its use as an elementary model of a larger neural network 
composed of numerous neurons. 

The computational capabilities of a single perceptron was not high and 
the achievable performance depended on both the set of inputs and the func-
tion to be implemented. However, the perceptron imposed on the field of AI 
two thought-provoking elements: a learning model based on pattern recogni-
tion and classification (not just symbol manipulation!) and the possibility of 
improvement based on training. Appropriately equipped with a perceptron, 
our Child Program would have been able to recognize the images and 
shapes of its environment, perceive the features of its parents and make pre-
cise classifications of objects in the world. A new way of knowing was 
emerging. As it does among us humans, the ‟child” required to be educated, 
and it seemed to be able to improve its performance as its experience in-
creased. Despite this, it was still not entirely clear how to do this with the 
necessary precision. The AI paradigm needed to further expand its theoreti-
cal horizons. 

7. MACHINE LEARNING 

A specific subset of AI is Machine Learning (ML). The goal of this disci-
pline is to develop artificial systems, now called agents, to whom is given 
the ability to learn from already acquired knowledge. It is not a matter of in-
putting data and programs, but of teaching machines to autonomously learn 
something new. The difference between the two approaches is decisive. The 
expert systems such as DENDRAL were usually built without any learning 
component and the basic knowledge needed to perform the referenced task 
was usually constructed through a manual process called “knowledge engi-
neering,” where a computer scientist collaborated with an expert in the field, 
with the goal of transferring some of the expert’s knowledge in the system, 
obviously using the appropriate formalism. These programs exhibit skills at 
the same level as humans, but only in very narrow areas such as, for exam-
ple, diagnosing limited classes of diseases, suggesting specific antibiotic 
treatments, or determining the optimal configuration of a computer... and so 
on. 

Nevertheless, the expert systems approach quickly showed its limita-
tions. The unsolvable problem was the difficulty of knowledge acquisition. 
The main source to make an expert system work is in fact the so-called 
knowledge base, i.e., a repository of skills related to a specific domain used 
by the system to accomplish its task. The content of the knowledge base had 
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to be acquired manually, through a collaborative activity between an expert 
in the application domain and a computer scientist, who knew nothing about 
the domain under consideration. This procedure, which had worked in the 
beginning, became increasingly complicated, uneconomical, as well as inap-
plicable in many domains. 

Once again, an innovative idea was needed. It was found by Judea Perl 
in 1988, in a groundbreaking book24 that opened the current history of AI. 
Pearl proposed the use of probability calculus to deal with both modeling 
and inference in intelligent systems. The use of probability had been rejected 
by some of the fathers of AI (particularly by John McCarthy) as it was con-
sidered epistemologically and computationally inappropriate for AI. Pearl 
defended his view by demonstrating that a consistent interpretation of prob-
abilistic theory was possible through a graph-based formalism called Proba-
bilistic Graphical Models, the main representative of which are Bayesian 
Networks. The use of such formalisms allows compact and efficient model-
ing of uncertain knowledge, and the use of specialized inference algorithms 
allows to answer all kinds of probabilistic questions; moreover, the ability to 
learn both the structure and parameters of the graphical model made it possi-
ble to overcome many limitations of logic-based systems and opened the 
way for more real-world applications. 

Over time, different statistical methods were developed such as the Sup-
port Vector Machines (SM) and the Ensemble Learning approaches. Ensem-
ble approaches implement the so-called ‟folk wisdom” idea: if a certain pro-
cess can perform a given prediction with a particular performance, then 
considering several processes performing the same prediction can – in theory 
– increase the overall performance with respect to the required task. The 
process can be differentiated using different algorithms or data. For example, 
it is possible to run a number of different algorithms that produce different 
prediction models on the same data set, and then send the prediction provid-
ed by the majority of the models – possibly weighing the result according to 
the respective certainty of the prediction – so that the models that predict a 
result with higher certainty have a greater weight in producing a final an-
swer. In contrast, a different ensemble approach might be to use the same al-
gorithm or model several times, but with a different set of data. This type of 
approach is closely related to some statistical computational methodologies, 
such as the renowned bootstrap method, which is an effective way to im-
prove the final performance of a prediction model. Performance is usually 
                                                        
24 J. Pearl, Probabilistic Reasoning in Intelligent Systems (Burlington: Morgan Kaufmann, 
1988). On the technological side, we cannot forget the development of neural networks and 
deep learning. I can only refer to an author who is considered the “Godfather” of deep learn-
ing, Geoffrey Hinton. For an introduction see Y. LeCun, Y. Bengio, and G. Hinton, “Deep 
Learning,” Nature, 521 (2015): 436-444. 
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measured by the accuracy metric, which consists of the percentage of correct 
predictions compared to the entire set of predictions provided. Obtaining dif-
ferent opinions on the same set of data or the same opinion on a similar set 
of data is the method used by the ensemble approach to increase final accu-
racy.  

In any case, whichever approach is chosen, the accuracy of the result 
will depend on the large availability of input data. In 2010, The Economist 
Magazine came out with a significant headline on its cover, The data deluge. 
The cover featured a man with an upside-down umbrella under a deluge of 
data. The upside-down umbrella collected some of this data and a plant was 
watered with the collected rain. The era of Big Data was beginning, and AI 
effectively became a way to exploit a huge amount of data made available by 
both electronic devices and human activities.  

We have arrived at the present time, but what does the advent of Ma-
chine Learning mean for our Child Program? The answer is the following: it 
means a complete reversal of perspective. First, machine learning enables 
knowledge and action in environments characterized by uncertainty, where 
reasoning is required based on degrees of belief and not on the simple true-
false dichotomy. The point of view becomes that of expectation and proba-
bility that something will happen. Data are the evidence for reasoning on 
which new agents rely – and the data are real evidence, that is what we al-
ready know and not abstract assumptions. Even more important, Machine 
Learning radically changes the status of algorithms. Every program has an 
input and an output. Data are provided by the environment, and the program 
does what it necessarily has to do, following what someone else has deter-
mined for it. The Machine learning starts from the data and the desired re-
sult. Only later it does arrive at the algorithm capable of passing from one 
(data) to the other (result). The Learning algorithms are algorithms that 
write other algorithms. They do not just learn how to deal with data. They 
learn how to learn better. 

8. CONCLUSIONS 

We imagined that the history of AI has been a ‟pedagogical” history. At the 
heart of our fiction was the following problem: can we artificially simulate 
not the finished result of an educational process, but the process itself? What 
are the steps through which a hypothetical child program proceeds from an 
initial – uneducated state – to an “adult” and trained one? I believe that some 
decisive moments in the development of AI systems have been (not always 
in a conscious way) attempts to answer this problem. 
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Starting with the idea that any improvement in the capabilities of the 
Child Program simulated similar capabilities of a real child, I assumed that 
the programming methods created in the history of AI could help us better 
define the nature of education in general – and thus also the nature of human 
education. I want to make myself clear. I am not going to establish identity 
of process and method between program implementation and human train-
ing, but to look at human education from the perspective marked by the at-
tempts to educate the machines. After all, those who have made the history 
of AI – and we have seen this clearly – have always considered the human 
processes as the starting model for their research. Why then not consider the 
opposite path, which looks at humans from the perspective of machines, ep-
istemically permissible? As a result of all this, I try to define below in list 
form the elements of extended education (for machine and human being), 
which should be considered valid for any educational training: 
 

Training of Extended Education (TEE) 
Starting State The starting state, the zero state, must 

be well defined. If we do not know 
where we start from, we cannot know 
which path to take to reach our goals. 
The zero state never corresponds to a 
tabula rasa, but to a system of prior 
information and rules capable of con-
ditioning what follows. 

Target Status In any educational process, objectives 
must be precisely defined. Without a 
goal, neither a path nor a strategy can 
be determined. In relation to the target, 
two paths of approach are possible: 
either we formulate a step-by-step 
program a priori or we set the goal 
and only then we define the best strat-
egy to achieve it. 

Heuristics The education in complex fields of 
knowledge needs to identify heuristic 
strategies. The complexity of domains 
produces intractability and does not 
allow solutions to be reached in rea-
sonable time. An educational process 
cannot be protracted indefinitely. Heu-
ristics do not follow a clear path, but 
rely on intuition and the temporary 
state of circumstances in order to 
achieve the goal or generate new 
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knowledge. It introduces progressive 
leaps and cheap and effective devia-
tions from the time and quality of a 
performance. 

Rules In every educational field we need im-
perative rules, but also open, declara-
tive rules. Sometimes the rule must be 
found based on the data we already 
have. With complex domains only the 
invention of appropriate rules guaran-
tees deep knowledge. 

Data In knowledge acquisition, data are 
never neutral elements. Their quality 
and quantity also determine the kind 
of rules we use as well as the amount 
of certainty we can achieve. Knowing 
a lot about our environment helps us 
to act more effectively. 

Orient yourself The metaphor that should guide us in 
education is not that of the vessel to be 
filled or even that of the paradigm to 
be declined, but that of navigating 
through an unknown territory. 

Deductive/Inductive training The best educational training should 
involve a mastery of both deductive 
and inductive strategies, encouraging 
– as needed – the transition from one 
to the other. 

 
We tried to educate our Child Program in the way we would educate a 

human child. Perhaps the time is coming to understand whether the methods 
we invented for the artificial child are now useful for educating our flesh-
and-blood children. 
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